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Abstract—We propose an improved algorithm for no-reference
image quality assessment (NR-IQA) using the convolutional neu-
ral network (CNN) and neural theory based saliency detection.
Firstly, we extract non-overlapping patches from the input image.
For each patch, we obtain the quality score by CNN network,
which consists of seven layers and integrates feature learning
and regression into image patch quality estimation. Considering
that the patches attracting much attention take significant role
in visual perception, an efficient technique based on free energy
based neural model is used to detect the saliency map. This
saliency map is then applied as a weighting mask to output
the quality score of the whole image. Results of experiments
show that our algorithm achieves state-of-the-art performance,
as compared with the prevailing IQA methods.

Index Terms—No-Reference, Image Quality Assessment, con-
volutional neural network, free energy

I. INTRODUCTION

Based on the availability of reference images, image quality
assessment is classified into three categories: full reference
(FR) IQA, reduced-reference (RR) IQA and no-reference (NR)
IQA. FR-IQA algorithms can measure the quality of image
directly by comparing the distorted image with the undistorted
reference image. Typical examples of FR-IQA algorithms
include VIF [1], SSIM [2], FSIM [3] and ADD-SSIM [4].
RR-IQA methods are provided with partial information about
the original reference image. However, ideal reference images
are actually unavailable in many practical computer vision
applications. The study of NR-IQA algorithms is required.
No-reference image quality assessment (NR-IQA), which aims
at predicting the quality of digital images without the non-
distorted reference image, is one of the most challenging tasks
of objective image quality measures.

Many successful research teams use the natural scene s-
tatistics (NSS) model, because the regularity of nature images
has been proved in many visual science literatures. The NSS
features can be extracted in the wavelet transform, the DCT
transform domain or the spatial domain. The DIIVINE [5]
approach uses a two-stage framework and obtains the statistics

properties from a wavelet coefficient model. BLIINDS-II [6] is
a fast single-stage algorithm, which relies on the image DCT
coefficients since the energy of the input image concentrates
on a small block of DCT coefficients. The CORNIA [7]
algorithm shows good performance by directly using raw-
image-patches as local descriptors and learning a dictionary
to obtain effective image representations. The BRISQUE [8]
algorithm establishes the statistical model of the local normal-
ized luminance values and outputs the quality scores through
parameter analysis.

Recently, a Convolutional Neural Network (CNN) has been
applied to NR-IQA. In the literature of [9], the researchers
modify a 32× 32− 26× 26× 50− 2× 50− 800− 800− 1
network structure, such that it can predict the quality on small
patches. The problem of this model is that it obtains the image
quality scores by averaging the predicted patch scores, which
ignores the importance of the human vision system (HVS). In
[10], Li Jie et. al combined the CNN network and the Prewitt
magnitude of segmented images, considering that the HVS is
sensitive to the image edges and contours. The visual quality
scores are obtained by the quality score and the weight of each
image patch, which is inferred from the gradient map.

Nevertheless, the HVS is not just about the edges and con-
tours. Saliency detection, which highlights the salient object
regions in a scene, includes more factors of human visual
system, such as the surrounding environment, the luminance
and the location. It is widely accepted that the corresponding
visual saliency can improve the performance of the IQA.

In this paper, we propose an improved algorithm for NR-
IQA. Instead of gray images, we design a new CNN structure
focusing on color images. We then perform the saliency
detection with free energy based neural theory. After that, we
calculate the weight of small patches by the corresponding
saliency map. The final quality score is yielded with the
weighted average of each image patch.

The rest of the paper is organized as follows: In Section
2, we describe the improved NR-IQA algorithm in detail.
In Section 3, we provide the comparative experiments and
evaluate the performance of our approach. The conclusions
are drawn in Section 4.
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II. OUR ALGORITHM FOR NR-IQA

We propose an improved NR-IQA framework using CNN
and saliency detection. As compared with Li Jie’s work [10],
which only exploits edges to be an important factor in HVS
properties, we introduce saliency map computation into image
quality score estimation. It is noted that saliency computation
considers many HVS characteristics, including center surround
mechanism and pop-up object properties. Therefore, it is
expected that we can achieve more consistent results with
visual perception when saliency computation is integrated into
image quality estimation. In our NR-IQA framework, firstly,
we estimate the quality score of each image patch by CNN.
Secondly, we compute the saliency map based on free energy
theory. Finally, this saliency map is used as the weight mask
of the image patches, and we get the predicted score of the
whole image by computing the weighted averaging scores of
all the image patches.

A. Saliency detection

More than hundreds of saliency detection models have been
proposed in the recent years. Lately, a free energy principle
explains that there exists a relationship between the real
scene and the brain’s prediction, which easily surprises the
human viewers and attracts more human attention [11]. The
Free Energy inspired Saliency detection model (FES) [12]
searches for the gap between an image and its predicted
version that is reconstructed from the input signal with a
semi-parametric model, which provides a natural ground and
connection to saliency detection. The final saliency map is
formed to be the weighted sum across three local entropy maps
in different color channels. Some examples for the saliency
detection are shown in Figs 1, where (a)-(f) are respectively the
original image and its corresponding images of five distortion
types ( fast-fading channel simulation, Gaussian blur, JP2K
compression, white noise and JPEG compression) from LIVE
database [13], and the associated saliency maps are shown in
Fig 1(g)-(l). We can easily find that the FES algorithm could
predict human salient regions correctly and the saliency maps
for nearly all types of distortions share similar characteristics,
because the FES calculates the saliency map based on the
resized 63×47 pixel representation of the input color images.
It is shown that the FES is almost no damage to the image
quality information.

B. CNN for NR-IQA of color images with saliency computa-
tion

For an RGB image, we use a local normalization for each
channel separately, and sample non-overlapping patches of
size 32 × 32 from it. Suppose the intensity value of a pixel
at location (x, y) is I(x, y). Based on the work of the spatial
NSS model works, we compute normalized values Ĩ(x, y) as

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 1. Examples of representative images from LIVE [13] and the associated
saliency map: (a)original image; (b)fast fading; (c)Gaussian blur; (d)JP2K
compression; (e)white noise; (f)JPEG compression; (g)-(l) saliency maps of
(a)-(f).

Fig. 2. The architecture of our CNN

follows:

Ĩ(x, y) =
I(x, y)−m(x, y)

σ(x, y) + c

m(x, y) =
1

(2P + 1)(2Q+ 1)

P∑
p=−P

Q∑
q=−Q

I(x+ p, y + q)

σ(x, y) =

√√√√ P∑
p=−P

Q∑
q=−Q

(I(x+ p, y + q)−m(x, y))2

(1)

where c is a small positive constant avoiding division-by-zero.
Parameters P = 3 and Q = 3 are the normalized window
sizes.

We establish a CNN architecture, which contains: two
convolutional, two pooling and three full-connected layers, as
shown in Fig 2. The first convolutional layer(C1) filters the



32×32 input patch with 16 kernels of size 5×5 with a stride
of 1 pixel and produces 16 feature maps of size 28 × 28.
A max and min pooling layers(MAX2, MIN2) come after the
convolutional layer. For each feature map, we take the max and
min over 3×3 with a stride of 2. After the pooling, we get two
14×14×16 feature maps. The second convolutional layer(C31,
C32) filters the input with 32 kernels of size 5×5 with a stride
of 1 pixel. The outputs of layer C31 and layer C32 are both 32
feature maps of size 10× 10. They are followed by a max or
min pooling layer(MAX4,MIN4) respectively, which takes the
max or min over 2× 2 with a stride of 2. Two full-connected
layers(F5, F6) of 800 nodes are connected to all outputs of
max and min pooling layers. The last full-connected layer(F7)
only contains one node and gives the predicted quality score.
It works as a simple linear regression. We use the logistic
neurons on the convolutional layers (C1,C31,C32), but we
apply the ReLUs on the pooling and full-connected layer.

Let f(xi : para
t) denote the estimated score of the input

patch xi with our CNN’s parameters para, and yi denotes the
ground truth score. The loss function is:

Loss =
1

Ntotal

Ntotal∑
i=1

∥yi − f(xi; para)∥l2

para′ = min
para

Loss

(2)

where Ntotal is the number of total image patches.
We update the parameters para with momentum as follows:

∆parat = γ∆parat−1 + ϵtpara′

parat = parat−1 +∆parat
(3)

where parat is the parameters at epoch t. The momentum γ
stays at 0.9 as the training process. The learning rate ϵt for the
three convolution layers (C1) starts at a value of 0.0001 and
decreases to 0.00001 when t > 50. While, the learning rate for
other layers is 0.00001. We find out this setting could almost
save half of the training time and achieve better performance.

Due to the fact that each of our training images shares the
homogeneous distortions, we are able to take non-overlapping
32× 32 patches from the large images and regard the source
image’s quality score as the ground truth score of each patch.
In this way, we can get a much larger number of training
samples, which is important for CNN training. For test stage,
the CNN network is likely to work as a local distortion-based
pooling method by operating on the small patches, which has
proved to improve the performance of the IQA algorithm in
[14][15]. We are going to fine tune the final quality score for
better IQA performance, by combining the scores of every
patches by the weighted average. It is generally claimed that
the salient regions can easily attract the human attentions at
first glance and affect the human judgement of the images. In
this work, we take the influence of saliency into consideration
with examining the saliency maps of the test images. As a
result, the patches in salient region will contribute to the whole
image quality score greatly with large weight values. We get
the saliency map Sfinal by FES, and compute the weight wi

of image patch hi according to the saliency map Sfinal:

wi =

32×32∑
j=1

Sfinal(j) (4)

where pix j belongs to the patch hi . It should be noted that
the weights {wi}

Np

i=1 are then normalized between 0 and 1.
Finally, we get the predicted quality score Z of the test

image by computing:

Z =

∑Np

k=1 wk × zk∑Np

k=1 wk

(5)

where Np is the number of the patches sampled from the
test image, and zk is the predicted quality score by our CNN
network.

III. EXPERIMENTAL RESULTS

The comparative experiments are implemented on popular
LIVE database [13] and TID 2008 [16]. The LIVE database
consists of 29 reference images and 779 distorted images
with five distortions: JPEG2000 compression (JP2K), JPEG
compression (JPEG), White Gaussian (WN), Gaussian blur
(BLUR) and a Rayleigh fast-fading channel simulation (FF).
Differential Mean Opinion Scores (DMOS) in the range of
[0, 100] represent the subjective quality of the image. Higher
DMOS corresponds to lower image quality. The TID2008
database contains 25 reference images and 1700 distorted
images with 17 different types of distortions. Mean Opinion
Score (MOS) in the range of [0, 9] is associated with each
image. Higher MOS indicates higher image quality.

The two measures of Spearman Rank Order Correlation
Coefficient (SROCC) and Linear Correlation Coefficient (L-
CC) are used to evaluate the performance of IQA algorithm.
Spearman Rank Order Correlation Coefficient assesses how
well the relationship between two variables can be described
using a monotonic function and Linear Correlation Coefficient
measures the degree of linear dependence between two vari-
ables.

A. Performance Evaluation on LIVE Dataset

The experiments are non-distortion-specific, i.e. our network
is trained with all five distortions together. The results are
shown in Table I and Table II, as compared with the current
typical IQA algorithms. We randomly select 80% reference
images and their corresponding distorted images as the training
set and the remaining 20% as the test set. Our results are
obtained as the average score of 100 train-test iterations.
Among all the NR-IQA methods, the method with top-ranked
performance is highlighted in bold. It is significant that our
method achieves the best performance on JPEG, FF distortion
types. Meanwhile, our method is competitive in terms of
SROCC and LCC if all of five distortions are considered.
Especially, the proposed blind IQA model even outperforms
state-of-the-art FR-IQA methods, such as FSIM, VSI and
ADD-SSIM.



TABLE I
SROCC ON THE LIVE DATABASE

SROCC JP2K JPEG WN BLUR FF ALL
PSNR 0.870 0.885 0.942 0.763 0.874 0.866
SSIM [2] 0.939 0.946 0.964 0.907 0.941 0.913
FSIM [3] 0.970 0.981 0.967 0.972 0.949 0.964
VSI [17] 0.960 0.976 0.984 0.953 0.943 0.952
ADD-SSIM [4] 0.967 0.984 0.984 0.968 0.951 0.965
DIIVINE [5] 0.913 0.910 0.984 0.921 0.863 0.916
BLIINDS-II [6] 0.929 0.942 0.969 0.923 0.889 0.931
BRISQUE [8] 0.914 0.965 0.979 0.951 0.877 0.940
CORNIA [7] 0.943 0.955 0.976 0.969 0.906 0.942
Le’s CNN [9] 0.952 0.977 0.978 0.962 0.908 0.956
Li’s CNN [10] 0.964 0.935 0.988 0.941 0.945 0.958
our method 0.955 0.981 0.953 0.927 0.983 0.968

TABLE II
LCC ON THE LIVE DATABASE

LCC JP2K JPEG WN BLUR FF ALL
PSNR 0.873 0.976 0.926 0.779 0.870 0.856
SSIM [2] 0.921 0.955 0.893 0.893 0.939 0.906
FSIM [3] 0.91 0.985 0.978 0.978 0.912 0.960
VSI [17] 0.965 0.981 0.966 0.942 0.938 0.948
ADD-SSIM [4] 0.975 0.985 0.974 0.970 0.954 0.959
DIIVINE [5] 0.922 0.921 0.988 0.923 0.888 0.917
BLIINDS-II [6] 0.935 0.968 0.980 0.938 0.896 0.930
BRISQUE [8] 0.922 0.973 0.985 0.951 0.903 0.942
CORNIA [7] 0.951 0.965 0.987 0.968 0.917 0.935
Le’s CNN [9] 0.953 0.981 0.984 0.953 0.933 0.953
Li’s CNN [10] 0.978 0.977 0.993 0.945 0.960 0.966
our method 0.961 0.989 0.954 0.948 0.987 0.969

TABLE III
SROCC AND LCC OBTAINED BY TRAINING ON THE LIVE DATABASE AND

TESTING ON TID2008 DATABASE

SROCC LCC
CORNIA [7] 0.890 0.880
BRISQUE [8] 0.882 0.892
Le’s CNN [9] 0.920 0.903
our method 0.922 0.916

B. Cross-database test

In this section, the experiment is planed to test the ro-
bustness of our method. We train our CNN on LIVE dataset
and test its performance on TID2008 dataset. There are four
distortion types are shared by LIVE and TID2008, including
JP2K, JPEG, WN and BLUR. The value range of DMOS in
LIVE is from 0 to 100. But the MOS values in TID2008 fall in
the range from 0 and 9. We perform a nonlinear mapping with
a logistic function, which is usually applied to transform the
quality score gained by FR-IQA methods into a specified value
range. We randomly repeat to select 80% images of TID2008
to estimate the parameters of the logistic function and test
the performance on the remaining 20% images 150 times. We
report the results in Table III. Our algorithm is comparable to
the other state of the art methods.

IV. CONCLUSION

In this paper, we have proposed a no-reference image quality
assessment algorithm, which introduces saliency detection to
modify the CNN structure. Our method first estimates the
quality score of each image patch by CNN network. Next,

we compute the saliency map using free energy based neural
theory. The salient patches is assigned to be large weights
in the pooling stage. Finally, we get the predicted score
of the whole image by computing the weighted averaging
scores of all the image patches. In contrast to modern NR-
IQA methods, it emphasizes the fact that the distortions of
those image patches attracting much human’s attention affect
visual quality dominantly. Experimental results on LIVE and
TID2008 databases are provided to confirm the superiority
of our algorithm, achieving better performance with humans
visual perception.
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